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We propose a modified x-ray form factor that describes the scattering cross section in warm dense matter
valid for both the plasma and the solid �crystalline� state. Our model accounts for the effect of lattice corre-
lations on the electron-electron dynamic structure, as well as provides a smooth transition between the solid
and the plasma scattering cross sections. In addition, we generalize the expression of the dynamic structure in
the case of a two-temperature system �with different electron and ion temperatures�. This work provides a
unified description of the x-ray scattering processes in warm and dense matter, as the one encountered in
inertial confinement fusion, laboratory astrophysics, material science, and high-energy density physics and it
can be used to verify temperature relaxation mechanisms in such environments.
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I. INTRODUCTION

X-ray scattering of solid density plasmas has been proved
a successful technique for the characterization of warm and
dense states of matter �1–5�, as the ones created in high-
energy density experiments relevant for inertial confinement
fusion �ICF� �6� and found in the interior of stars and planets.
It was shown that by extending the theory of spectrally
resolved Thomson scattering to the hard x-ray regime, accu-
rate measurements of the electron temperature, electron den-
sity, and ionization state can be obtained. In this respect,
comparison of the experimental results with equation of state
�EOS� models has revealed important insights on the micro-
scopic state of solid density beryllium and carbon plasmas
�3,4�.

Those experiments were aimed to study relatively high
temperature regimes, where the matter is in a plasma state.
On the other hand, as the temperature is decreased and the
degree of coupling between charged particles increases, a
transition from a plasma to a solid state occurs. This transi-
tion involves the formation of highly ordered arrangements
of the atoms �i.e., a crystal is formed� as well as an overall
modification of the energy states available to the electrons. In
addition to crystallization, indication of a plasma phase tran-
sition in hydrogen at T�1 eV involving a change of its
chemical composition has been discussed �7,8�. The changes
in the electron binding that occurs at the onset of a phase
transition are characterized by a corresponding change in the
macroscopic transport properties such as electrical and ther-
mal conductivities. On the other hand, these properties are
extremely important for a correct understanding of the EOS
and the optical behavior of matter found in laboratory and
astrophysical environments, such as ICF, interior of planets,
and high-energy density physics. Theoretical studies on the
plasma to solid phase transition in a one component plasma
have been presented in the context of spectroscopy of astro-
physical clouds in the Galaxy �9�. These changes in both
spatial arrangements and energy states also reflect a change
in the way light is scattered by these systems.

In this work we provide a unified description of the x-ray
scattering form factor �the dynamic structure factor�, which

is the fundamental quantity describing the x-ray cross sec-
tion, for both nonequilibrium conditions �with separate tem-
peratures for ions and electrons� and either at the plasma or
the solid state. Our results, for example, can be applied to
interpret experiments from solid density plasmas undergoing
crystallization, thus providing a powerful experimental tech-
nique for the validation of EOS models in such regimes
�10,11�. Time resolved diffraction experiments on liquid-to-
solid phase transitions have also recently been presented
�12–14�. While in those original studies work was done in
the understanding of the change of the Bragg reflected light,
in the present study we mainly concentrate our analysis on
the scattering processes occurring outside the Bragg peaks.
Finally, we provide necessary framework for the understand-
ing of x-ray scattering experiments from shock heated mat-
ter, where strong nonequilibrium conditions may exist �15�,
as well as to study temperature relaxation in radiatively
heated matter �16�. The paper is organized as follows: in
Secs. II A and II B we introduce the basic concepts of the
model; in Sec. II C we develop a two-temperature plasma
model; Sec. II D is devoted to the inclusion of lattice effects
while Sec. II D discusses the effect of energy bands. All of
these effects are put together in Sec. III where synthetic
spectra for conditions found in laser plasma experiments are
constructed. A summary and concluding remarks are drawn
in Sec. IV.

II. THEORY

A. Basic concepts

Following the discussion in Ref. �17�, we describe the
scattering from a uniform plasma containing N ions per
unit volume. If ZA is the nuclear charge of the ion, the total
number of electrons per unit volume in the system, including
free and bound ones, is ZAN. Let us now assume we probe
such a system with x rays of frequency �0 such that
��0�EI, with EI the ionization energy of any bound elec-
tron, i.e., the incident frequency must be large compared to
any natural absorption frequency of the scattering atom,
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which allows us to neglect resonant scattering. During the
scattering process, the incident photon transfers momentum
�k and energy ��= ��0− ��1 to the electron, where �1 is
the frequency of the scattered radiation, and in the nonrela-
tivistic limit ���� ��0� accounting for refractive index
change,

k = �k� =
4�

�0
sin��/2��1 −

�pe
2

�c
2 , �1�

with �0=2�c /�0 the probe wavelength, � the scattering
angle, �pe= �e2ne /�0me�1/2 the electron plasma frequency,
and �c=2�c /�0 the critical frequency. Here ne is the elec-
tron density, me is the electron mass, and c is the speed of
light. We denote with Zf and Zc the number of free and
bound electrons, respectively. Clearly, ZA=Zf +Zc. Here Zc
includes both tightly bound and weakly bound electrons.
These electrons are bound to a single atom. Since Zf repre-
sents electrons which are not bound to any single atom, we
will also refer to it as the number of delocalized, valence, or
conduction electrons. Following the approach of Chihara
�18,19� the scattering cross section is described in terms of
the dynamic structure factor of all the electrons in the
plasma:

S�k,�� = �f I�k� + q�k��2Sii�k,�� + ZfSee
0 �k,��

+ Zc� S̃ce�k,� − ���Ss�k,���d��. �2�

The first term in Eq. �2� accounts for the density correlations
of electrons that dynamically follow the ion motion. This
includes both the bound electrons, represented by the ion
form factor f I�k�, and the screening cloud of free �and va-
lence� electrons that surround the ion, represented by q�k�
�1�. Sii�k ,�� is the ion-ion density correlation function. The
second term in Eq. �2� gives the contribution in the scattering
from the free electrons that do not follow the ion motion.
Here, See

0 �k ,�� is the high frequency part of the electron-
electron correlation function �20� and it reduces to the usual
electron feature �21,22� in the case of an optical probe. In-
elastic scattering by bound electrons is included in the last
term of Eq. �2�, which arises from bound-free transitions to

the continuum of core electrons within an ion, S̃ce�k ,��,
modulated by the self-motion of the ions, represented by
Ss�k ,��.

We have discussed the generalization of Eq. �2� to the
case of a multicomponent plasma in Ref. �5� and it will not
be discussed further here.

B. Effective temperatures for electrons and ions

In the analysis we have developed in our previous work
�4,17�, it was assumed that the plasma is in local thermody-
namic equilibrium �LTE� with the same electron and ion tem-
peratures. While for solid density plasmas, at relatively high
temperatures, the condition of LTE is closely approached due
to fast relaxation between ions and electrons, at lower tem-
peratures the concept of LTE is more subtle �23�, and it is
complicated by degeneracy effects. We shall treat degeneracy

for electrons and ions independently due to their different
thermal de Broglie wavelengths compared to the average in-
terparticle distance. In the limit Te→0 �Te is the electron
temperature�, the electron fluid is treated using the approach
suggested by Dharma-Wardana and Perrot �24� by consider-
ing a classical Coulomb fluid at the temperature
Tq=TF / �1.3251−0.1779�rs�, with rs=d /aB �aB is the Bohr
radius�, TF the Fermi temperature, and d= �3/4�ne�1/3. The
correlation properties are then calculated at the effective tem-
perature Te�= �Te

2+Tq
2�1/2. This approach was shown to repro-

duce finite-temperature static response of an electron fluid,
valid for arbitrary degeneracy �25�.

Similarly, as the ion temperature �Ti� is decreased, the
Coulomb forces between ions become progressively domi-
nant over their thermal motion �in other words, ion-ion cou-
pling increases� until crystallization occurs. The ions can still
oscillate around their lattice sites and the phonons are the
quantum-mechanical result of this process �see, e.g., Ref.
�26��. The stiffness of the ion lattice with respect to phonons
is calculated in terms of the Debye temperature �TD�, which
has been measured for most lattices, and in the case of
simple metals can be obtained through the Bohm-Staver
relation �27,28�

TD =
�

kB
�pi�k� , �3�

where kB is the Boltzmann constant and �pi�k� is the
screened ion plasma frequency. It differs from the usual ion
plasma frequency �pi because it accounts for the response of
the electron fluid that surrounds each ion. We thus have
�pi

2 �k�=�pi
2 / �1+kDe

2 /k2�, where �pi= �Zfe
2ne /�0mi�1/2 with mi

the ion mass, and kDe= �nee
2 /�0kBTe��

1/2 is the Debye
wave number for the electron fluid. Since, in the Debye
model, phonon modes with wavelength up to a fraction of
the lattice spacing are considered, we set in Eq. �3�
k	kmax= �2/Zf�1/3kF= �6�2ne /Zf�1/3, where kF is the Fermi
wave number. By analogy with the electron fluid, we can
define an effective temperature for the ions: Ti�= �Ti

2

+	0TD
2 �1/2 �	0=3/2�2=0.152�, which accounts for ion de-

generacy �i.e., phonon coupling� at low temperatures. This
definition preserves the correct quantum-mechanical limit for
the harmonic vibrations of a perfect crystal as Ti→0 �29�.
Similarly, the Debye wave number for the ions can be
defined as kDi= �Zfnee

2 /�0kBTi��
1/2.

For typical conditions found in laser plasma
experiments with solid density beryllium �3�, we have
ne�2.5
1023 cm−3 and Zf �2. This gives TF�14.5 eV and
TD�0.16 eV. Thus degeneracy effects become important for
the electrons when Te�TF=14.5 and ion lattice effects must
be considered when Ti�TD=0.16 eV.

C. Scattering form factor from a nonequilibrium plasma

Within the framework of the density response formalism
for a two component plasma, we can calculate the screened
interaction potentials using the semiclassical approach sug-
gested by Arkhipov and Davletov �30�, which is based on a
pseudopotential model for the interaction between charged
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particles to account for quantum diffraction effects �i.e., the
Pauli exclusion principle� and symmetry �31–33�. Quantum
diffraction is represented by the thermal de Broglie wave-
length �rs= � / �2��rskBTrs� �1/2 with �rs=mrms / �mr+ms� the
reduced mass of the interacting pair, and r ,s=e �electrons� or
i �ions�. The effective temperature Trs� is given by �34�,

Trs� =
mrTs� + msTr�

mr + ms
. �4�

Due to the large mass difference between ions and electrons,
Tei� 
Tee� .

In LTE, the fluctuation-dissipation theorem �see, e.g., Ref.
�35�� can be used to correlate the dielectric response of the
medium and the corresponding electron density fluctuation
spectrum. In other terms, a simple relation exists between the
screened interaction potentials, rs�k�, and the static re-
sponse of the medium, Srs�k�. As the system departs from
LTE, the validity of the fluctuation-dissipation theorem may
be questionable �36�. On the other hand, as shown in Ref.
�37� the fluctuation-dissipation theorem may be still a valid
approximation even under nonequilibrium conditions if the
temperature relaxation is slow compared to the electron den-
sity fluctuation time scale. A common condition in experi-
mental plasmas for this to occur is when mi�me so that the
coupling between the two components takes place at suffi-
ciently low frequency. Using a two-component hypernetted-
chain �HNC� approximation scheme, Seuferling et al. �34�
have shown that the static response under non-LTE takes the
form

Srs�k� = �rs −
�nrns

kBTrs�
rs�k� − �er�es�Te�

Ti�
− 1� �q�k��2

Zf
Sii�k� ,

�5�
with the screening charge given by �18�
q�k�=�ZfSei�k� /Sii�k�. The screened potentials rs�k� are
given explicitly in the Appendix. Having developed this
formalism, we are now able to evaluate all terms in Eq. �2�
for a non-LTE plasma. Symmetry in the electron-ion interac-
tions requires Sei�k�=Sie�k�. Since the ion motion will exhibit
long-time fluctuations at the ion plasma frequency and/or
sound speed, and the frequency scale of those fluctuations
is such that we are currently unable to experimentally
resolve them, it is reasonable to assume in Eq. �2�
Sii�k ,��=Sii�k�����. The measured width of the feature is
thus solely determined by the instrument resolution. The
ionic form factor f I�k� is related to the spatial distribution of
electrons that are truly bound to the ions, and it can be cal-
culated, for example, following the approach described in
Pauling and Sherman �4,38�.

For the high-frequency electron density fluctuations, we
can again use the fluctuation-dissipation theorem and set the
high frequency dielectric response in the random phase ap-
proximation �RPA� �39,40�,

See
0 �k,�� = −

�

1 − exp�− � �/kBTe�
�0k2

�e2ne
Im 1

��k,��� ,

�6�

with ��k ,��	�RPA�k ,��=1−v�k��0�k ,��, where v�k�
=e2 /�0k2 is the Fourier transform of the bare Coulomb po-

tential and �0�k ,�� is the density response of the noninter-
acting electron system. Local field corrections to the RPA in
the x-ray scattering context have been discussed previously
�41–43�. However, we should point out that for many
plasma conditions found in laser plasma experiments, such
corrections are marginal. For example, let us consider
the case of a solid density beryllium plasma with ne�2.5

1023 cm−3 and Te=20 eV, the electron-electron coupling
constant �ee=e2 / �4��0kBTe�d��0.6, thus the degree of cou-
pling is still quite modest. Equation �6� explicitly includes
detailed balance: See

0 �k ,��=exp�−�� /kBTe�See
0 �k ,−��. In

other terms, as Te→0, excitations that result in an energy
gain for the photons are suppressed. This is a statistical effect
that originates in the quantum-mechanical nature of the elec-
tron fluid at low temperature, i.e., in the ground state, elec-
trons cannot lower their energy anymore. We should notice
that detailed balance gives a direct measure of the kinetic
electron temperature �Te�, independent of the details of the
microscopic theory, provided that both the red and blue com-
ponents of the structure factor See

0 �k ,�� can be measured.
This is the case when ��pe�kBTe, and for solid density be-
ryllium this occurs at Te�20 eV.

Finally, the calculation of the last term in Eq. �2�
can be easily done within the impulse approximation
scheme, as discussed in Ref. �4�. This concludes the required
formalism to analytically construct the x-ray scattering spec-
trum from a dense plasma which is far from LTE conditions.

We shall now investigate the effects of non-LTE in the
scattering spectrum. Let us consider again the case of a
dense beryllium plasma with ne�2.5
1023 cm−3, Zf =2, and
Te=20 eV. In Fig. 1 we have plotted the static structures
Srs�k� and the screening charge q�k� for different values for
the ratio Ti /Te. We see that consistent differences between
the equilibrium values and the non-LTE ones, especially for
the ion-ion structure factor, are found up to k /kDe�15 �or
�=kDe /k�0.07�. This would correspond to an x-ray probe
with energy �30 keV for a 90° scattering angle. On the
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FIG. 1. �Color online� Calculated structure factors Srs�k�
and screening charge q�k� for a beryllium plasma with
ne�2.5
1023 cm−3, Zf =2, and Te=20 eV. Ti /Te=1 �solid line�,
Ti /Te=0.5 �dashed line�, and Ti /Te=0.1 �dashed-dotted line�.
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other hand, as the screening distance is mainly determined
by the more mobile electrons, q�k� remains independent on
the changes of the ion temperature. The electron-electron
static structure is related to the ion-ion structure by the rela-
tion �19� See�k�= ��q�k��2 /Zf�Sii�k�+See

0 �k�, where See
0 �k� is the

static response associated to the highly mobile electrons.
Note that the screening charge q�k� has been constructed
such that, in the Debye-Hückel limit, See

0 �k� is also indepen-
dent on Ti. We should recall that the suppression of the ion
response in a classical plasma has been discussed by Kunze
�44� in the context of optical Thomson scattering.

At sufficiently low probe energies, the LTE assumption
overestimates the intensity of the elastic scattering when the
system departs from equilibrium conditions. In the regime
where k�kDe �i.e., noncollective scattering�, the elastic com-
ponent in the scattering spectrum can be approximated
as �17�

Ii = Zc
2Sii�k� , �7�

where Zc is strictly the number of tightly bound �K-shell�
electrons for which their ionization energy is much
larger than the Compton recoil. We see that an
overestimate of Sii corresponds to an underestimate of Zc,
with ��Zc /Zc � = ��Sii /2Sii�. Attention should then be applied
in the analysis of experimental spectra for the measurement
of the average ionization state, as errors in Zc �or Zf� up to
�30% are possible if strong non-LTE conditions are present.
On the other hand, we should point out that the model imple-
mented for the calculation of Sii�k� is based on a variation of
the RPA and thus its applicability at large ion coupling may
miss the formation of long-range ordering of the ions �i.e., a
lattice�. We will incorporate such effects with the analysis
developed in the next section.

D. Lattice effects

As the ion temperature is reduced, the Coulomb interac-
tion between ions start to dominate over their kinetic energy.
The degree of ion coupling is expressed by the parameter
�ii=Zf

2e2 /4��0kBTi�dii, where dii= �3Zf /4�ne�1/3 is the mean
ionic separation �or Wigner-Seitz cell�. The ion-ion coupling
parameter is related to the electron-electron coupling param-
eter by the relation �ii=Zf

5/3�Te� /Ti���ee, thus for most experi-
mental conditions, the electrons remain weakly coupled even
if the ions are strongly coupled. The analysis we have carried
on so far does not include direct effects in the scattering
which are associated with the underlying lattice arrange-
ments. The most predominant of such modifications in the
scattering cross section �2� is in the appearance of Bragg
diffraction. As discussed in Ref. �45� the continuity of the
structure factors across the phase boundary is necessary in
order to preserve the thermodynamic and transport properties
of the medium. Let us consider a generalized version of
Eq. �2�:

S�k,�� = �f I�k� + q�k��2SII�k,�� + ZfSEE
0 �k,��

+ Zc� S̃ce�k,� − ���Ss�k,���d��, �8�

where here SII�k ,�� and SEE
0 �k ,�� simply denotes a more

general form for the ion-ion and free electron structure fac-
tors �the core electron structure factor instead does not de-
pend on the thermodynamic status of the medium, but only
on the core atomic structure of the ion which we regard to
remain unaffected by such changes�. The most general
definition of the ion-ion structure factor is �19�

SII�k,�� =
1

2�N
� �

r

�eik·�Rr�t�−R0�0���ei�tdt , �9�

where �¯� denotes a thermal average and Rr�t� is the posi-
tion vector for the rth ion. The task in evaluating SII�k ,�� is
thus reduced to the calculation of

I = �
r

�eik·�Rr�t�−R0�0��� . �10�

Suppose that at t=−� each atom is at the position Rr�−� �
=Ur. Without loss of generality, we can pick t=−� as the
time when the system was in the cold solid state. In this case,
the vectors Ur give the position of each atom in the initial
lattice. We then decompose the motion of each ion as the
sum of two distinct terms: an oscillation �vibration�, ur�t�,
around the instantaneous center of mass of each atom, and a
global translation of the centers of mass, xr�t�. Clearly, we
must have Rr�t�=Ur+ur�t�+xr�t�, with the condition
�ur�t��=0. With this is mind, we can rewrite Eq. �10� as

I = �
r

eik·�Ur−U0��eik·�ur�t�−u0�0��eik·�xr�t�−x0�0��� . �11�

Let also assume that the lattice vibrations ur�t� and the site
translations xr�t� are statistically independent. We should
note that this assumption may not hold if, for example, in-
tense external fields are applied to the system. This implies

�eik·�ur�t�−u0�eik·�xs�t�−x0�� = �rs�eik·�ur�t�−u0���eik·�xs�t�−x0�� ,

�12�

where we have used the shorthand notation u0�0�	u0 and
x0�0�	x0. Under these conditions

I = ��
r

�ek·�xr�t�−x0��� 
 ��
r

eik·�Ur−U0��ek·�ur�t�−u0��� .

�13�

The second part of the previous expression containing the
thermal average of the lattice vibrations can be treated using
the Debye model in the zero-phonon approximation, as de-
scribed, for example, by Warren �46�. Using the fact that, for
any variable u, �eu�=e�u2�/2, we have

�
r

eik·�Ur−U0��ek·�ur�t�−u0�� = �1 − e−2W� + e−2Wb�k� , �14�

where

b�k� =
1

N
�
r,s

eik·�Ur−Us� �15�

is the Bragg peak, and
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2W =
�2k2�2

4MkBTD
� Ti�

TD
�2

�16�

is the Debye-Waller factor �29,46�, which we have defined in
terms of the effective ion temperature Ti�. This definition pre-
serves the correct quantum-mechanical limit for Ti→0 �29�.
We notice that, as Ti increases, the Debye-Waller factor gets
larger and thus acts to reduce Bragg diffraction. In a high
temperature plasma we expect e−2W
0 so any Bragg scat-
tering, b�k�, is suppressed. This thermal damping of Bragg
scattering is also known in the x-ray diffraction community
as thermal diffuse scattering �46�. The factor 1−e−2W for the
beryllium case is plotted in Fig. 2. We clearly see that for
kd�0.5 ���4� the Debye-Waller factor becomes important
only for Ti /Te�0.5.

In the limit of Ti�TD, W→� and Eq. �13� reduces to

I = �
r

�ek·�xr�t�−x0�� , �17�

and it becomes naturally associated to the plasma ion-ion
structure factor:

Sii�k,�� =
1

2�N
� �

r

�ek·�xr�t�−x0��ei�tdt . �18�

In other terms, the plasma ion-ion structure factor is
related to the response of medium to random �or thermal�
fluctuations. We will calculate this term using the
methods described in the previous section for a non-LTE
plasma. The generalized ion-ion structure factor can be thus
written as

SII�k,�� = Sii�k,����1 − e−2W� + e−2Wb�k�� . �19�

E. Simplified band structure

Another important effect which is associated with the for-
mation of a lattice structure is the modification of the energy
states available to the electrons, namely energy bands are

created. In the case of electrons in the conduction band of a
metal, RPA is often adequate to describe their response
�39,40�. Instead, for insulators and semiconductors correc-
tions to the RPA may be necessary. For large k scattering,
electrons in either conduction or valence bands can still be
considered nearly as free for x-ray scattering due to the large
energy transfer with respect to the energy in the band. On the
other hand, for small k scattering we can have energy gaps of
the order of �10% of the plasmon excitations and in this
case corrections to the RPA can be important. Since we are
still dealing with large excitations compared to most band
gaps, we assume a model insulator �or semiconductor� with
only one energy gap in the excitation spectrum. As discussed
by Levine and Louie �47�, the effect of such a gap is to
modify the dielectric response for all frequencies above the
gap and suppressing the response below it. They developed a
model dielectric function at Te=0 which fully preserves par-
ticle conservation �i.e., the f-sum rule�. Adapting their model
to finite temperatures, we have for �� � ��g

�EE�k,�� = �RPA„k,sgn�����2 − �g
2
… , �20�

where �g
Egexp�−kBTe /Eg� /� is the excitation frequency
for an energy gap Eg. For �� � ��g we instead have
Im �EE�k ,��=0. The resultant form for the free electron
dynamic structure is thus

SEE
0 �k,�� = −

�

1 − exp�− � �/kBTe�
�0k2

�e2ne


Im 1

�EE�k,��� . �21�

Since the antisymmetry of the imaginary part of the dielec-
tric function is maintained in this formulation, the detailed
balance relation can again be implemented as a possible tem-
perature diagnostic. Suppose we probe this model semicon-
ductor �or insulator� with Cl Ly-� x rays of energy 2.96 keV
at a scattering angle of 45°. We assume TF=12.5 eV �ne=2

1023 cm−3� and Te=10 eV with different values for the
band gap. These scattering conditions give for the scattering
parameter �2� �=�pe /kvte=1.3 �vte

2 =kBTe� /me� and kd=1.1,
which denotes the photons being scattered by the collective
response of the medium �i.e., by plasmons�. The calculated
structure factor SEE

0 �k ,�� is shown in Fig. 3. We see that the
main effect of an energy band gap is to suppress excitations
near �=0. Effectively, this also means that the total �nearly�
elastically scattered measured signal is reduced if a band gap
is present. Wecan estimate this correction in the small k case
�and by
assuming Te�Ti�TD such that the non-LTE and Debye-
Waller corrections are negligible�. Since in this case,
f I�k�+q�k�
ZA �17� and the elastic scatter contribution from
the ionic part is

Ii 
 ZA
2Sii�k� . �22�

On the other hand, the inelastically scattered signal from free
electrons near �=0 is
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FIG. 2. �Color online� Calculated Debye-Waller correction fac-
tors for solid beryllium with ne�2.5
1023 cm−3, Zf =2, and
Te=20 eV. Ti /Te=1 �solid line�, Ti /Te=0.5 �dashed line�, and
Ti /Te=0.1 �dashed-dotted line�. In the plot, a value of unity corre-
sponds to no correction.
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Ie
0 � Zf�gSee

0 �k,0� 

��Zf�

2

�g

�pe
. �23�

Clearly, the effect of the band gap suppression in the
elastically scattered radiation will be important when, say
Ie

0 / Ii�0.1, or

� � 0.06
ZA

2Sii�k��pe

Zf�g
. �24�

We have Sii�0.1–0.4 for ��1 depending on the degree of
nonequilibrium. Let us consider, for example, silicon at solid
density with ��pe�15 eV, ��g�5 eV, and Zf =4, thus Eq.
�24� becomes ��1.5–6. It is therefore important to include
energy band corrections in the case of highly collective scat-
tering. On the other hand, a similar calculation for the large k
case �which corresponds to the noncollective scattering re-
gime, or ��1� yields a negligible effect of the band gap in
the scattering spectrum.

III. DISCUSSION AND SYNTHETIC SPECTRA

The analysis developed in the previous section shows that
strong suppression of the elastically scattered light occurs for
both non-LTE conditions and in the presence of a crystalline
solid outside the Bragg condition. While the first effect is
essentially classical �44�, the second one relates to strong ion
coupling. Since in a solid plasma non-LTE is associated to a
cold ionic fluid, while the electron energy remains suffi-
ciently high at the Fermi level, we should expect two tem-
perature effects and possible suppression of elastically scat-
tered light also when �ii�1. On the other hand, lattice
effects become important only at a significantly larger cou-
pling when solidification occurs and Bragg scattering must
be considered together with the possible appearance of band
levels. This roughly happens when 2W�1. In Fig. 4 we have
identified these different regimes for the case of solid density

beryllium. It is clear that �for Zf �2� strong ion coupling
becomes significant for Ti�10 eV and lattice effects should
be included for Ti�1 eV. We need to stress that for Zf �1
the definition of the coupling parameter should also take into
consideration the effect of neutral collisions. On the other
hand, as Zf �1 we expect that the correlations between
charged particles will be modest. Under such conditions, ion-
neutral and electron-neutral collisions only marginally affect
the structure factors �48�.

The generalized x-ray cross section is obtained by putting
Eqs. �19� and �21� into Eq. �8�. In the case when the scatter-
ing angle is chosen that such eventual Bragg peaks will lie
outside the detector field of view, we have for the overall
dynamic structure:

S�k,�� = �f I�k� + q�k��2�1 − e−2W�Sii�k,�� + ZfSEE
0 �k,��

+ Zc� S̃ce�k,� − ���Ss�k,���d��. �25�

This expression includes the effects of both non-LTE as
well as lattice dynamics. The importance of such a treatment
is clearly illustrated in Fig. 5, where we have calculated
the expected signal for a beryllium plasma in the case of
Cl Ly-� probe x rays at 45° scattering angle. We assume
ne�2.5
1023 cm−3, Zf =2, and Te=20 eV with different
values for the ion temperature. We should note that in this
geometry the closest Bragg diffraction peaks occur at 35.8°
and 66.4° for polycrystalline beryllium. Synthetic spectra
have been generated by assuming 7 eV full width at half
maximum Gaussian instrument response. As the degree of
nonequilibrium is increased, there is a dramatic drop in the
intensity of the elastic component. The main drop in elastic
component in Fig. 5 is mainly due to nonequilibrium and
only a small part ��25% � due to the density effect �i.e.,
Debye-Waller factor� even for the Ti /Te=0.1 case. Measure-
ment of this drop could indeed provide a novel non-LTE
diagnostic of solid density plasmas.

We envision this technique as a primary diagnostic for the
investigation of phase transitions in strongly coupled sys-
tems. In particular, measurement of the scattering spectrum
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FIG. 3. �Color online� Calculated free �valence� electron
dynamic structure factor for the model semiconductor �insulator�
described in the text. The system is probed with x rays of energy
2.96 keV at a scattering angle of 45° with TF=12.5 eV and
Te=10 eV. Eg=0 �solid line�, Eg=5 eV �dashed line�, and
Eg=10 eV �dashed-dotted line�.
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FIG. 4. �Color online� Zf −Ti diagram showing different scatter-
ing regimes for solid density beryllium. �ii=1 �solid line�, 2W=1
for Ti /Te=1 �dashed line�, and Ti /Te=0.1 �dashed-dotted line�.
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in shocked hydrogen could directly probe the existence of
the plasma phase transition �7,8�, which has been theoreti-
cally predicted as first-order phase transition between a
weakly and a strongly ionized state. In this respect, the cross-
ing of the phase boundary far from the critical point should
correspond in the scattering spectrum as a change in the in-
tensity of plasmon resonances �due to a change in Zf�. On the
other hand, near the critical point, a sharp increase in the
scattering cross section in the long wavelength limit is ex-
pected to occur due to the appearance of macroscopic fluc-
tuations in the sample �49�. Clearly, the model we have pre-
sented loses its validity near the critical point.

IV. SUMMARY

This concludes our effort in treating the transition from a
plasma to a solid using a common theoretical framework.
The possibility for a direct investigation of nonequilibrium
solid density matter undergoing phase transitions is of ex-
treme interest for the understanding of the EOS for condi-
tions relevant for laboratory astrophysics as well as for the
characterization of shock heated materials in ICF experi-
ments. This work provides the necessary background for
implementing x-ray scattering as such diagnostics. The only
free parameters in the problem are the ion and electron tem-
peratures and their respective densities. The x-ray response
of the medium as a function of these parameters is then ob-
tained from general concepts. Some limitations of the model
should be, however, kept in mind. In the analysis of the solid
x-ray scattering response, for example, we have limited our-
selves to a very simple picture of a lattice and neglected any
possible anisotropies as well as we have not considered more
than a single atom in the lattice cell. We believe that these
approximations are sufficient to treat simple metals and plas-

mas undergoing crystallization, but a more accurate treat-
ment may be required for complex systems. We leave this to
a future work.
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APPENDIX

The screened potential rs�k� appearing in Eq. �5� are
given by �17,30�

ee�k� =
e2

�0�
 k2

1 + k2�ee
2 �

+ kDi
2 � 1

�1 + k2�ee
2 ��1 + k2�ii

2�
−

1

�1 + k2�ei
2 �2�

+ A�k2 +
kDi

2

1 + k2�ii
2�k2exp�− k2/4b�� , �A1�

ii�k� =
Zf

2e2

�0�
 k2

1 + k2�ii
2�

+ kDe
2 � 1

�1 + k2�ee
2 ��1 + k2�ii

2�
−

1

�1 + k2�ei
2 �2�

+  Ak2kDe
2

1 + k2�ii
2 exp�− k2/4b�� , �A2�

ei�k� = −
Zfe

2

�0�

k2

1 + k2�ei
2 , �A3�

where b= ��ee
2 � ln 2�−1, A=kBTee� ln 2�3/2b−3/2�0 /e2, and

� = k4 +
k2kDe

2

1 + k2�ee
2 +

k2kDi
2

1 + k2�ii
2

+ kDe
2 kDi

2 � 1

�1 + k2�ee
2 ��1 + k2�ii

2�
−

1

�1 + k2�ei
2 �2�

+ Ak2kDe
2 �k2 +

kDi
2

1 + k2�ii
2�exp�− k2/4b� . �A4�

The inverse of the electron and the ion Debye lengths are
kDe= �nee

2 /�0kBTee� �1/2 and kDi= �Zfnee
2 /�0kBTii��1/2, respec-

tively. In Eqs. �A1�–�A4� the thermal de Broglie wavelength
is defined by �rs= � / �2��rskBTrs� �1/2 with �rs=mrms / �mr

+ms� the reduced mass of the interacting pair.

-40 -20 0 20 40
Energy shift (eV)

0.01

0.1

1
S(

k,
w

) 
(a

rb
. u

ni
ts

)

FIG. 5. �Color online� Synthetic scattering profiles for solid be-
ryllium with ne�2.5
1023 cm−3, Zf =2, and Te=20 eV. The x-ray
probe energy is 2.96 keV and the scattering angle is �=45° �corre-
sponding to kd=1.1 or k /kDe=0.8�. A 7-eV full width at half maxi-
mum instrument function is assumed. Ti /Te=1 �solid line�,
Ti /Te=0.5 �dashed line�, and Ti /Te=0.1 �dashed-dotted line�.
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